

INVT Solar Technology (Shenzhen) Co., Ltd.

TEST REPORT

SCOPE OF WORK EMC TESTING- See page 2

REPORT NUMBER 210623184GZU-001

ISSUE DATE


[REVISED DATE]

02-September-2021 [------]

PAGES 48

DOCUMENT CONTROL NUMBER EN IEC 61000-6-1, 6-3-a © 2021 INTERTEK

Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China

 Telephone:
 86-20-8213 9688

 Facsimile:
 86-20-3205 7538

 www.intertek.com

Applicant Name &	:	INVT Solar Technology (Shenzhen) Co., Ltd.
Address		6 th Floor , Block A, INVT Guangming Technology Building, Kejie
		Fourth Road, Shutianpu Community, Matian Guangming District,
		518000 Shenzhen, PEOPLE'S REPUBLIC OF CHAINA
Manufacturing Site	:	Same as applicant
Intertek Report No:		210623184GZU-001

Test standards

EN IEC 61000-6-3:2021 EN IEC 61000-6-1:2019

Sample Description

Product	:	Grid-tied Solar inverter
Model No.	:	iMars XG100KTR, iMars XG100KTR-F, iMars XG110KTR,
		iMars XG110KTR-F, iMars XG136KTR-L, iMars XG136KTR-LF,
		iMars XG136KTR-X, iMars XG136KTR-XF
Electrical Rating	:	See page 6 to 7
Serial No.		Not Labeled
Date Received	:	23 June 2021
Date Test	:	30 July 2021- 25 August 2021
Conducted		

Prepared and Checked By

Cuican Unen

Guitar Huang Project Engineer

Approved By:

Sky Zhu Team Leader

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City,

GETDD, Guangzhou, Guangdong, China

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TEST REPORT

CONTENT

TEST REPORT
CONTENT
1. TEST RESULTS SUMMARY
2. EMC RESULTS CONCLUSION
3. LABORATORY MEASUREMENTS
4. EQUIPMENT USED DURING TEST
5. EMI TEST
5.1 EN 61000-6-3 CONTINUOUS CONDUCTED DISTURBANCE VOLTAGE TEST 1 5.1.1 Block Diagram of Test Setup 1 5.1.2 Test Setup and Procedure 1 5.1.3 Test Data and curve 1 5.2 EN 61000-6-3 DISCONTINUOUS CONDUCTED DISTURBANCE VOLTAGE 10
5.3 EN 61000-6-3 EMISSION AT TELECOMMUNICATIONS/NETWORK PORTS 16 5.4 EN 61000-6-3 RADIATED EMISSION BELOW 1 GHZ 16 5.4.1 Block Diagram of Test Setup 16 5.4.2 Test Setup and Procedure 16 5.4.3 Test Data and Curve 16 5.5 EN 61000-6-3 RADIATED EMISSION ABOVE 1 GHZ 20
6. HARMONICS OF CURRENT
7. FLICKER
8. EMS TEST
8.1 EN 61000-4-2(Pursuant to EN 61000-6-1) Electrostatic Discharge Immunity
9. APPENDIX I - PHOTOS OF TEST SETUP
10. APPENDIX II – PHOTOS OF EUT

TEST REPORT

1. TEST RESULTS SUMMARY

Test Item	Standard	Result
Continuous conducted	EN IEC 61000-6-3:2021	Pass
disturbance voltage	Reference: EN 55016-2-1:2014	
Discontinuous conducted	EN IEC 61000-6-3:2021	N/A
disturbance voltage	Reference: EN 55014-	
	1:2017+A11:2020	
Emission at Telecommunications	EN IEC 61000-6-3:2021	Pass
/ network Ports	Reference: EN 55032 :2015+A11 :2020	
Radiated emission (30 MHz–1000	EN IEC 61000-6-3:2021	Pass
MHz)	Reference: EN 55016-2-3:2017	
Radiated emission (1 GHz–6 GHz)	EN IEC 61000-6-3:2021	N/A
	Reference: EN 55016-2-3:2017	
Harmonic of current	EN IEC 61000-6-3:2021	N/A
	Reference: EN IEC 61000-3-2 :2019	
Flicker	EN IEC 61000-6-3:2021	N/A
	Reference: EN 61000-3-	
	3:2013+A1:2019	
ESD immunity	EN IEC 61000-6-1:2019	Pass
	Reference: EN 61000-4-2:2009	
Radiated EM field immunity	EN IEC 61000-6-1:2019	Pass
	Reference: EN 61000-4-3:2006	
	+A1:2008 + A2:2010	
EFT immunity	EN IEC 61000-6-1:2019	Pass
	Reference: EN 61000-4-4:2012	
Surge immunity	EN IEC 61000-6-1:2019	Pass
	Reference: EN 61000-4-5:2014	
Inject current immunity	EN IEC 61000-6-1:2019	Pass
	Reference: EN 61000-4-6:2014	
Power frequency magnetic field	EN IEC 61000-6-1:2019	Pass
immunity	Reference: EN 61000-4-8:2010	
Voltage dips and interruption	EN IEC 61000-6-1:2019	N/A
immunity	Reference: EN 61000-4-11:2004	

Remark:

1. The symbol "N/A" in above table means Not Applicable.

2. When determining the test results, measurement uncertainty of tests has been considered.

TEST REPORT

2. EMC RESULTS CONCLUSION

RE: EMC Testing Pursuant to EMC Directive 2014/30/EU performed on the Grid-tied Solar inverter, Models: iMars XG100KTR, iMars XG100KTR-F, iMars XG110KTR, iMars XG110KTR-F, iMars XG136KTR-L, iMars XG136KTR-LF, iMars XG136KTR-X, iMars XG136KTR-XF

General product information:

The control system is divided into DC and AC control. AC-DSP and CPLD on the AC side mainly monitors the voltage, current, frequency and GFCI on the grid side, and participates in the inverter control.

The DC-DSP monitors the voltage, current, and ISO on the PV input side, and participates in the BOOS booster circuit and maximum power MPPT point tracking.

There is an internal communication circuit between the two DSP to coordinate with each other to complete the software function of the whole machine.

The ARM monitoring board does not participate in the control of the whole system. It communicates with the DC-SPS to collect the data of the whole system.

The relays (K3,K4,K5,K6) are designed on redundant structure where K4,K6 are controlled by DC-DSP and K5,K6 are controlled by AC-DSP.

The AC-DSP and DC-DSP are used together to control relay open or close, if the single fault on one controller, the other controller can be capable of opening the relay, so that still providing safety means.

Model differences:

All models are identical, except the output power derating in software and components as list in CDF.

Model	iMars XG100KTR, iMars XG100KTR-F	iMars XG110KTR, iMars XG110KTR- F	iMars XG136KTR- L, iMars XG136KTR-LF	iMars XG136KTR- X, iMars XG136KTR-XF
PV input	9 strings MPPT Each MPPT: two string input	10 strings MPPT Each MPPT: two string input 12 strings MPPT Each MPPT: two string inpu		ring input
AC output voltage	230/400Vac		277/480Vac	311/540Vac

The detailed difference as following:

The product was tested on:

The Software version: V1.1

The Hardware version: VA.1

Other than special notes, typical model **iMars XG136KTR-L** used as representative for testing in this report.

The production units are required to conform to the initial sample as received when the units are placed on the market.

Electrical Rating:

Model	iMars XG100KTR	iMars XG100KTR-F	
Max.PV voltage	1100Vdc		
MPPT voltage range	180V – 1000Vdc		
Max.input current	26A*9	30A*9	
PV lsc	40A*9		
Nominal output voltage	3/N/PE, 23	80/400Vac	
Nominal output Frequency	50/6	60Hz	
Max.output current	158	.8A	
Rated output power	100	KW	
Max.apparent power	110	KVA	
Power factor range	0.8Leading -	- 0.8 lagging	
Safety level	Cla	ss I	
Ingress Protection	IP 66		
Operation Ambient Temperature	-30°C - +60°C		
Software version	V1.1		
Model	iMars XG110KTR iMars XG110K		
Max.PV voltage	1100Vdc		
MPPT voltage range	180V – 1	L000Vdc	
Max.input current	26A*10	30A*10	
PV lsc	40A	*10	
Nominal output voltage	3/N/PE, 23	30/400Vac	
Nominal output Frequency	50/6	60Hz	
Max.output current	174	.6A	
Rated output power	110	KW	
Max.apparent power	121	KVA	
Power factor range	0.8Leading -	- 0.8 lagging	
Safety level	Clas	ss I	
Ingress Protection	IP	66	
0	-30°C - +60°C		
Operation Ambient Temperature	-30°C -	+60°C	

Model	iMars XG136KTR-L	iMars XG136KTR-LF	
Max.PV voltage	1100Vdc		
MPPT voltage range	180V – 1	1000Vdc	
Max.input current	26A*12 30A*12		
PV lsc	40A	*12	
Nominal output voltage	3/N/PE, 27	77/480Vac	
Nominal output Frequency	50/6	50Hz	
Max.output current	<u>174</u>	. <u>6A</u>	
Rated output power	136	KW	
Max.apparent power	150	KVA	
Power factor range	0.8Leading -	- 0.8 lagging	
Safety level	Cla	ss I	
Ingress Protection	IP 66		
Operation Ambient Temperature	-30°C - +60°C		
Software version	V1	1	
Model	iMars XG136KTR-X iMars XG136KTR-XI		
Max.PV voltage	1100)Vdc	
MPPT voltage range	180V – 1	1000Vdc	
Max.input current	26A*12	30A*12	
PV lsc	40A	*12	
Nominal output voltage	3/N/PE, 311/540Vac		
iteriniai output voltage	5/11/1 E, 5.	11/540Vac	
Nominal output Frequency		11/540Vac 50Hz	
	50/6		
Nominal output Frequency	50/6 <u>160</u>	50Hz	
Nominal output Frequency Max.output current	50/6 <u>160</u> 136	50Hz 9.4 <u>A</u>	
Nominal output Frequency Max.output current Rated output power	50/6 160 136	50Hz 9 <u>.4A</u> KW	
Nominal output Frequency Max.output current Rated output power Max.apparent power	50/6 160 136	50Hz <u>1.4A</u> KW KVA - 0.8 lagging	
Nominal output Frequency Max.output current Rated output power Max.apparent power Power factor range	50/6 <u>160</u> 136 150 0.8Leading -	50Hz <u>1.4A</u> KW KVA - 0.8 lagging ss I	
Nominal output Frequency Max.output current Rated output power Max.apparent power Power factor range Safety level	50/6 160 136 150 0.8Leading - Cla IP	50Hz 1.4A KW KVA - 0.8 lagging ss I	

TEST REPORT

3. LABORATORY MEASUREMENTS

Configuration Information

Support Equipment:	DC power source
Rated Voltage and frequency under test: Condition of Environment:	See page 6 to 7 Temperature: 22~28°C Relative Humidity:35~60% Atmosphere Pressure:86~106kPa

Notes:

1. The EMI measurements had been made in the operating mode produced the largest emission in the frequency band being investigated consistent with normal applications. An attempt had been made to maximize the emission by varying the configuration of the EUT.

2. The EMS measurements had been made in the frequency bands being investigated, with the EUT in the most susceptible operating mode consistent with normal applications. The configuration of the test sample had been varied to achieve maximum susceptibility.

3. Test Location: All tests were performed at:

INVT Solar Technology (Shenzhen) Co., Ltd.

6 th Floor , Block A, INVT Guangming Technology Building, Kejie Fourth Road, Shutianpu Community, Matian Guangming District, 518000 Shenzhen, PEOPLE'S REPUBLIC OF CHAINA

Except the Harmonic of current, Flicker, Radiated EM field immunity and Power frequency magnetic field immunity tests were subcontracted at: Shenzhen EMTEK Co.,Ltd.

Bldg. 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China.

Intreast						
No.	ltem	Measurement Uncertainty				
1	Conduction Emission (150 kHz-30 MHz)	3.5dB				
2	Radiated Emission (30 MHz-1 GHz)	3.6 dB				

4. Measurement Uncertainty

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

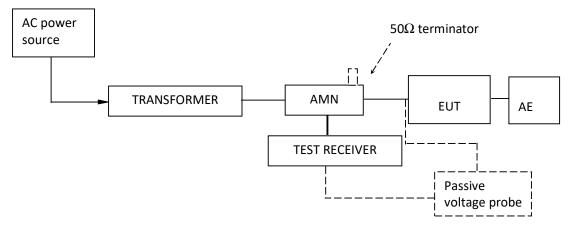
Measurement uncertainty is calculated in accordance with CISPR16-4-2:2011 The measurement uncertainty is given with a confidence of 95%, k=2.

4. EQUIPMENT USED DURING TEST

Equipment	from IVT			
Test item	Equipment	Model	No.	Due Date
	signal generator	CIT-10	IT-RD-617	2022-07-07
	signal generator	75A250AM1	IT-RD-142	2022-04-05
CS	EM Clamp	EMCL-20	IT-RD-618	2022-07-07
	attenuator	75W 6dB	IT-RD-619	2021-08-27
	CDN	CDN-M5-32A	IT-RD-642	2022-01-12
EFT	EFT system	EFT 500T	IT-RD-704	2021-11-05
	EFT Clamp	CCC 1000	IT-RD-705	2021-11-05
	Surge signal	CWS 800G+SPN	IT-RD-787	2022-04-05
Surge	generator	3832T		
Suige	Signal line surge	SG-728G+SCN-C5	IT-RD-552	2021-09-23
	generator			
ESD	ESD system	EDS 30V	IT-RD-754	2022-04-08
	EMI Receiver	ESPI3	IT-RD-139	2021-12-22
	AMN	NNLK 8121	IT-RD-247	2021-09-23
	Antenna	VULB9168	IT-RD-257	2022-03-11
CE/RE	shield room	543	IT-RD-455	2024-11-18
	shield room	753	IT-RD-245	2024-11-18
	3m anechoic	966	IT-RD-717	2024-09-21
	chamber			

R/S (EMTEK)							
Equ.No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
EE-066-2	Power Amplifier	MILMEGA	AS0102-55	1018770	2022/5/19	1 Year	
EE-066-4	50ohm Diode Power Sensor	BOONTON	51011EMC	34236	2021/5/19	1 Year	
EE-066-6	RF Power Meter. Dual Channel	BOONTON	4232A	10539	2021/5/19	1 Year	
EE-067	LogPer. Antenna	SCHWARZBECK	VULP 9118E	811	N/A	N/A	
EE-218	Signal Generator	Agilent	N5181A	MY50145187	2021/5/19	1 Year	
EE-219	50ohm Diode Power Sensor	BOONTON	51011EMC	36164	2021/5/19	1 Year	
EE-220	Broad-Band Horn Antenna	SCHWARZBECK	STLP 9149	9149-227	N/A	N/A	
EE-221	Field Strength Meter	DARE	RSS1006A	10100037SNO22	2021/5/19	1 Year	
EE-222	Multi-function interface system	DARE	CTR1009B	12100250SNO72	N/A	N/A	
EE-223	Automatic switch group	DARE	RSW1004A	N/A	N/A	N/A	
EE-224	Power Amplifier	MILMEGA	AS1860-50	1059346	2021/5/19	1 Year	
EE-225	Power Amplifier	MILMEGA	80RF1000- 175	1059345	2021/5/19	1 Year	
EE-225-1	Directional Coupler	MILMEGA	DC6180AM1	0340463	2021/5/19	1 Year	
EE-115	Audio Analyzer	R&S	UPV	101473	2021/5/19	1 Year	
EE-615	Audio Test System	AUDIO PRECISION	ATS-1	41100	2021/5/19	1 Year	

Power frequency magnetic field (EMTEK)						
Equ.No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EE-006	Magnetic Field Tester	HAEFELY	MAG100	250040.1	2021/5/28	1Year


TEST REPORT

5. EMI TEST

5.1 EN 61000-6-3 Continuous Conducted Disturbance Voltage Test

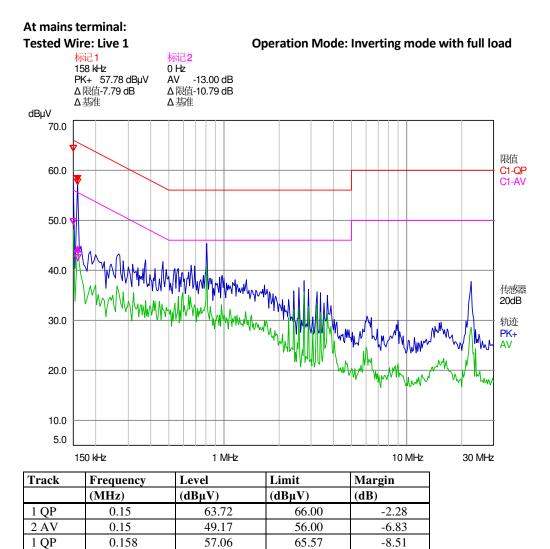
Test Result: Pass

5.1.1 Block Diagram of Test Setup

5.1.2 Test Setup and Procedure

The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a 50 Ω linear impedance artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane (Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high nonmetallic supported on GRP. The EUT keeps a distance of at least 0.4m from a vertical metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

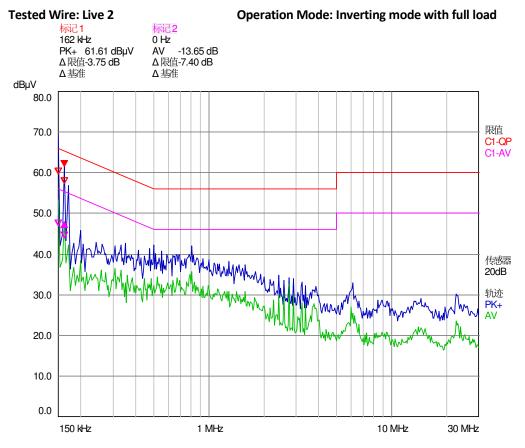

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30 MHz was checked.

TEST REPORT

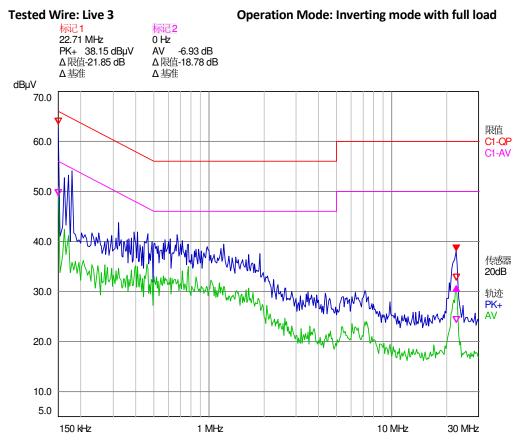
5.1.3 Test Data and curve

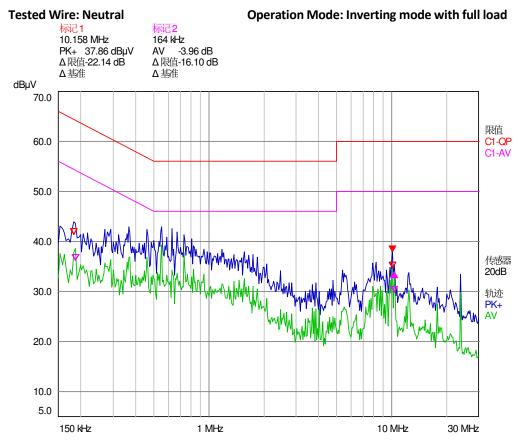
55.57


-13.69

2 AV

0.158


41.88


Track	Frequency	Level	Limit	Margin
	(MHz)	(dBµV)	(dBµV)	(dB)
1 QP	0.15	59.70	66.00	-6.30
2 AV	0.15	46.87	56.00	-9.13
1 QP	0.162	57.30	65.36	-8.06
2 AV	0.162	43.99	55.36	-11.37

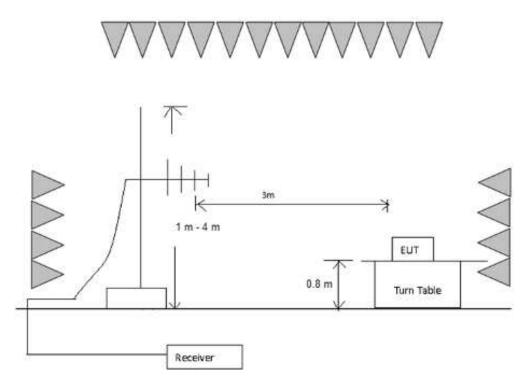
Track	Frequency	Level	Limit	Margin
	(MHz)	(dBµV)	(dBµV)	(dB)
1 QP	0.15	63.50	66.00	-2.50
2 AV	0.15	49.07	56.00	-6.93
1 QP	22.71	32.16	60.00	-27.84
2 AV	22.71	23.79	50.00	-26.21

Track	Frequency	Level	Limit	Margin
	(MHz)	(dBµV)	(dBµV)	(dB)
1 QP	0.182	41.33	64.39	-23.06
2 AV	0.186	36.19	54.21	-18.02
1 QP	10.158	34.59	60.00	-25.41
2 AV	10.322	29.85	50.00	-20.15

TEST REPORT

5.2 EN 61000-6-3 Discontinuous Conducted Disturbance Voltage

Test Result: Not applicable


5.3 EN 61000-6-3 Emission at Telecommunications/network Ports

Test Result: Not applicable. Remark: The test only apply to balanced telecommunication ports intended for connection to unscreened balanced pairs

5.4 EN 61000-6-3 Radiated Emission below 1 GHz

Test Result: Pass

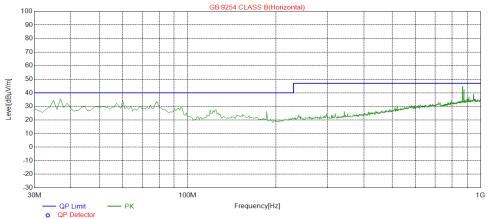
5.4.1 Block Diagram of Test Setup

5.4.2 Test Setup and Procedure

The measurement was applied in a semi-anechoic chamber. The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mask. The antenna moved up and down between from 1meter to 4 meters to find out the maximum emission level.

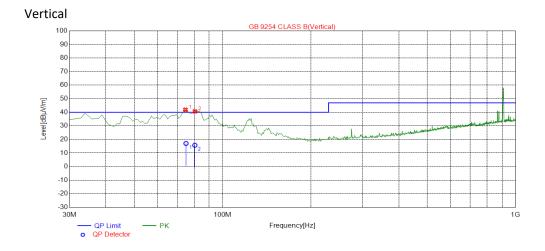
TEST REPORT

Broadband antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to EN55032 requirement during radiated test. The bandwidth setting on R&S Test Receiver was 120 kHz. The frequency range from 30MHz to 1000MHz was checked



TEST REPORT

5.4.3 Test Data and Curve


Operation Mode: Inverting mode with full load

Horizontal

All emission levels are more than 10 dB below the limit.

Final Data List						
NO.	Freq. [MHz]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	
1	75.0018	17.06	40.00	22.94	Vertical	
2	80.4101	15.73	40.00	24.27	Vertical	

TEST REPORT

5.5 EN 61000-6-3 Radiated Emission above 1 GHz

Test Result: Not Applicable Remark:

The highest internal source of the EUT is not more than 108 MHz, so the measurement above 1000 MHz is not applicable.

6. Harmonics of current

Test Result: Not applciable.

The test is applicable to equipment connected to public low-voltage systems with input current 16 A and \leq 75 A per phase

7. Flicker

Test Result: Not applicable

The test is appliable to low-voltage supply systems – Equipment with rated current ≤75 A and subject to conditional connection.

TEST REPORT

8. EMS TEST

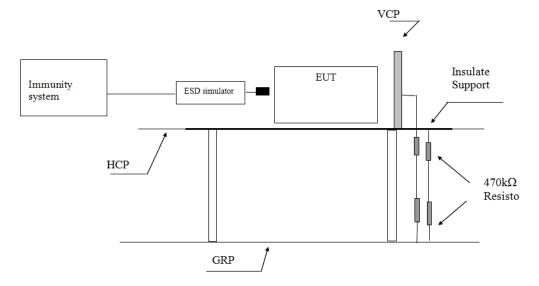
Performance Criteria:

Criterion A:	The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permission loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible
Criterion B:	performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation and from what the user may reasonably expect from the apparatus if used as intended. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permission loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum

- performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description, and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- Criterion C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instruction for use.

Operation mode of EMS test:

Test Item	Operation mode
ESD immunity	
Radiated EM field immunity	
EFT immunity	
Surge immunity	
Inject current immunity	Inverting mode with light load
Power frequency magnetic	
field immunity	
Voltage dips and interruption	
immunity	


8.1 EN 61000-4-2(Pursuant to EN 61000-6-1) Electrostatic Discharge Immunity

Performance criterion: B

Test Result: Pass

8.1.1 Block Diagram of Test Setup

Note: HCP means Horizontal Coupling Plane,

VCP means Vertical Coupling Plane

GRP means Ground Reference Plane

8.1.2 Test Setup and Procedure

The EUT was put on a 0.8m high wooden table 0.1m high for floor standing equipment standing on the ground reference plane (GRP) 3m by 2m in size, made by iron 1.0 mm thick.

A horizontal coupling plane(HCP) 1.6m by 0.8m in size was placed on the table, and the EUT with its cables were isolated from the HCP by an insulating support thick than 0.5mm. The VCP 0.5m by 0.5m in size & HCP were constructed from the same material type & thickness as that of the GRP, and connected to the GRP via a 470k Ω resistor at each end.

The distance between EUT and any of the other metallic surface excepted the GRP, HCP & VCP was greater than 1m.

The EUT was arranged and connected according to its functional requirements.

Direct static electricity discharges were applied only to those points and surface which were accessible to personnel during normal usage.

TEST REPORT

On each preselected points 10 times of each polarity single discharge were applied. The time interval between successive single discharges was at least 1s.

The ESD generator was held perpendicular to the surface to which the discharge was applied. The discharge return cable of the generator was kept at a distance of 0.2m whilst the discharge was being applied. During the contact discharges, the tip of the discharge electrode was touched the EUT before the discharge switch was operated. During the air discharges, the round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT.

Indirect discharge was conducted to objects placed near the EUT, simulated by applying the discharges of the ESD generator to a coupling plane, in the contact discharge mode.

After each discharge, the ESD generator was removed from the EUT, the generator was then retriggered for a new single discharge. For ungrounded product, a grounded carbon fibre brush with bleeder resistors ($2\times470 \text{ k}\Omega$) in the grounding cable was used after each discharge to remove remnant electrostatic voltage.

For air discharge, a minimum of 10 single air discharges were applied to the selected test point for each such area.

8.1.3 Test Result

Direct Application of ESD

Direct Contact Discharge

Applied Voltage (kV)	No. of Discharge for each point	Result	Discharged Points
4	20	Pass	Accessible metal parts of the EUT
			Conductive substrate with coating which is not declared to be insulating

Direct Air Discharge

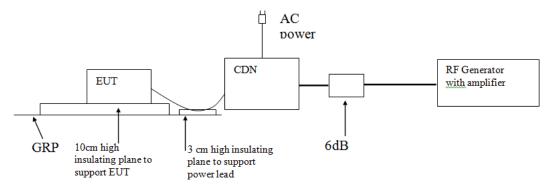
Applied Voltage (kV)	No. of Discharge for each point	Result	Discharged Points
2, 4, 8	20	Pass	All accessible points where contact discharge cannot be applied such as Displays, Indicators light, Keyboard, Button, Switch, Knob, Air gap, Slots, Hole and so on

Indirect Application of ESD

Horizontal Coupling Plane under the EUT

Applied Voltage (kV)	No. of Discharge for each point	Result	Discharged Point
4	20	Pass	At the front edge of each HCP opposite the centre point of each unit of the EUT

Vertical Coupling Plane beside the EUT


Applied Voltage (kV)	No. of Discharge for each point	Result	Discharged Point
4	20	Pass	The centre of the vertical edge of the coupling plane

8.2 EN 61000-4-6(Pursuant to EN 61000-6-1) Injected Current (0.15 MHz to 80 MHz)

Performance criterion: A

Test Result: Pass

8.2.1 Block Diagram of Test Setup

8.2.2 Test Setup and Procedure

The EUT was placed on an insulating support of 0.1m height above a ground reference Plane, arranged and connected to satisfy its functional requirement.

All relevant cables were provided with the appropriate coupling and decoupling devices at a distance between 0.1m and 0.3m from the projected geometry of the EUT on an insulating support of 0.03m height above the ground reference plane.

Test voltage was verified before each testing though power meter combined in the RF generator with AMP.

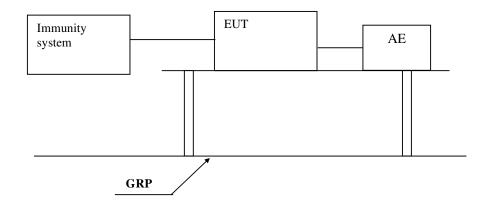
TEST REPORT

Dwell time was set to 3s and step was set as 1% to keep sufficient response time for EUT. The frequency from 0.15MHz to 80MHz was checked.

The frequency range is scanned as specified. However, when specified in Annex A of EN 61000-6-1, an additional comprehensive functional test shall be carried out at a limited number of frequencies. The selected frequencies for conducted test are: 0,2; 1; 7,1; 13,56; 21; 27,12 and 40,68 MHz (±1 %).

8.2.3 Test Result

Port	Frequency (MHz)	Level	Result
A.C. Power Lines	0.15 to 80	3V (r.m.s.)	Pass
D.C. Power Lines	0.15 to 80	3V (r.m.s.)	Pass
Signal Lines	0.15 to 80	3V (r.m.s.)	N/A
Control Lines	0.15 to 80	3V (r.m.s.)	N/A
Functional Earth	0.15 to 80	3V (r.m.s.)	N/A


8.3 EN 61000-4-4(Pursuant to EN 61000-6-1) Electrical Fast Transient/Burst

 Tested Port: ☑ AC power
 ☑ DC power
 □ Functional earth
 □ Signal/Control

Performance criterion: B

Test Result: Pass

8.3.1 Block Diagram of Test Setup

8.3.2 Test Setup and Procedure

The EUT was placed on a 0.1m high wooden table, standing on the ground reference plane 3m by 2m in size, made by steel 1mm thick.

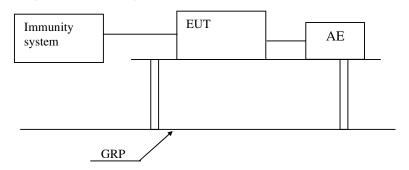
The distance between the EUT and any other of the metallic surface except the GRP was greater than 0.5m.

TEST REPORT

The mains lead excess than 0.5m was folded to avoid a flat coil and situated at a distance of 0.1m above the ground reference plane to insure the distance between the coupling device and the EUT was 0.5m.

The EUT was arranged and connected to satisfy its functional requirement and supplied by the coupling-decoupling network. Repetition Frequency was 5 kHz.

8.3.3 Test Result


Level	Polarity	A.C. Power supply line and functional earth terminal	D.C. Power Lines, Signal Line & Control Line
0.5 kV	+	N/A	Pass
0.5 kV	_	N/A	Pass
1 kV	+	Pass	N/A
1 kV	-	Pass	N/A

8.4 EN 61000-4-5(Pursuant to EN 61000-6-1) Surge Immunity

Tested Port: 🛛 AC power 🛛 DC power

Performance criterion: B Test Result: Pass

8.4.1 Block Diagram of Test Setup

8.4.2 Test Setup and Procedure

The surge was applied to the EUT power supply terminals via the capacitive coupling network.

Decoupling networks were required in order to avoid possible adverse effects on equipment not under test that might be powered by the same lines and to provide sufficient decoupling impedance to the surge wave so that the specified wave might be developed on the lines under test.

The EUT was arranged and connected according to its functional requirements.

TEST REPORT

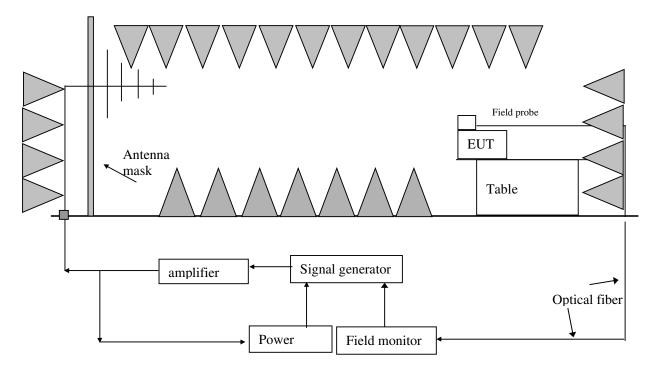
The EUT was placed on a 0.1m high wooden support above the GRP), supplied by the coupling-decoupling network, and arranged and connected to satisfy its functional requirement. The power cord between the EUT and the coupling/decoupling network was less than 2 meters.

8.4.3 Test Result

Tested Port	Level	Result
AC power	Line to line±0.5kV, ±1kV	Pass
AC power	Line to earth ±0.5kV, ±1kV,±2kV	Pass
DC power	Line to earth ±0.5kV	N/A

8.5 EN 61000-4-11(Pursuant to EN 61000-6-1) Voltage Dips and Interruptions

Tested Port: AC power Test Result: Not Applicable Remark: the test only applicable to the AC input port.



TEST REPORT

8.6 EN 61000-4-3(Pursuant to EN 61000-6-1) Radiated Electromagnetic Field Immunity

Performance criterion: A Test Result: Pass

8.6.1 Block Diagram of Test Setup

Filter

TEST REPORT

8.6.2 Test Setup and Procedure

The test was conducted in a fully anechoic chamber to maintain a uniform field of sufficient dimensions with respect to the EUT, and also in order to comply with various national and international laws prohibiting interference to radio communications.

The equipment was placed in the test facility on a non-conducting table 0.8m high (for floor standing EUT, is placed on a non-conducting support 0.1m height).

The EUT was placed on the uniform calibrated plane which is 3V/m EM field.

For all ports connected to EUT, manufacturer specified cable type and length was used, for those cables no specification, unshielded cable applied. Wire was left exposed to the electromagnetic field for a distance of 1 m from the EUT.

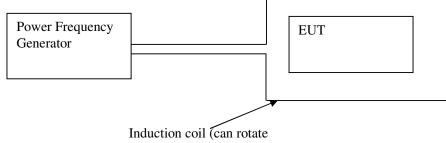
The EUT was arranged and connected according to its functional requirements

Before testing, the intensity of the established field strength had been checked by placing the field sensor at a calibration grid point, and with the field generating antenna and cables in the same positions as used for the calibration, the forward power needed to give the calibrated field strength was measured. Spot checks was made at a number of calibration grid points over the frequency range 80 to 1000 MHz and 1.4 to 6.0 GHz, both polarizations was checked. After calibration, the EUT was initially placed with one face coincident with the calibration plane.

The frequency range was swept from 80 to 1000MHz and 1.4 to 6.0 GH, with the signal 80% amplitude modulated with a 1 kHz sinewave, pausing to adjust the r.f. signal level. The dwell time at each frequency was 3s so as that the EUT to be exercised and be able to respond.

The step size was 1% of the fundamental with linear interpolation between calibrated points. Test was performed with the generating antenna facing each of the four sides of the EUT.

Frequency (MHz)	Exposed Side	Field Strength (V/m)	Result
80 to 1000,1400 to 6000	Front	3 V/m (r.m.s.)	Pass
80 to 1000,1400 to 6000	Left	3 V/m (r.m.s.)	Pass
80 to 1000,1400 to 6000	Rear	3 V/m (r.m.s.)	Pass
80 to 1000,1400 to 6000	Right	3 V/m (r.m.s.)	Pass


8.6.3 Test Result

TEST REPORT

8.7 EN 61000-4-8(Pursuant to EN 61000-6-1) Power Frequency Magnetic Field Immunity

Tested Port: Enclosure Performance criterion: A 8.7.1 Block Diagram of Test Setup

to X, Y, Z axis.

8.7.2 Test Setup and Procedure

Put EUT into center of induction coil (with suitable dimensions) in the testing.

For tabletop equipment:

The EUT was placed on a big enough wooden desk with height of 0.8m and operating as intended.

The equipment shall be subjected to the test magnetic field by using the induction coil of standards (1m*1m).

The induction coil shall be rotated by 90⁰ in order to expose the EUT to the test field with different orientations.

For Floor-standing equipment:

The EUT was placed on big enough wooden desk with height of 0.1m and operating as intended.

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions; the test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different position along the side of the EUT, in steps corresponding to 50% of the shortest side of the coil.

The induction coil shall then be rotated by 90⁰ in order to expose the EUT to the test field with different orientations and the same procedure followed.

8.7.3 Test Result

Mains frequency: 🗵 50 Hz

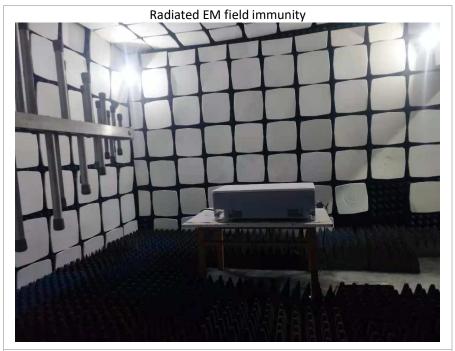
⊠60 Hz

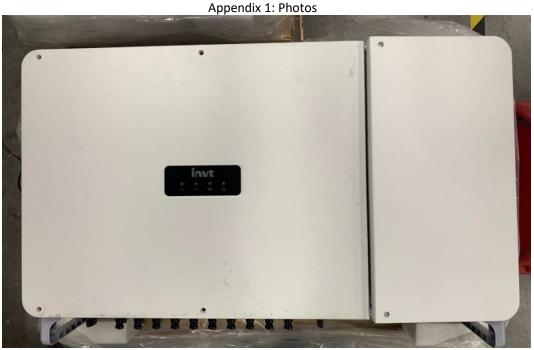
Orientations of induction coil	Magnetic Field Strength (A/m)	Result
Х	3 A/m	Pass
Y	3 A/m	Pass
Z	3 A/m	Pass

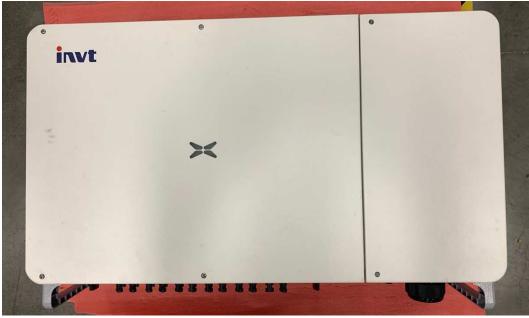
TEST REPORT

Conducted disturbance voltage at mains ports invt Radiated emission (30 MHz-1000 MHz)

9. APPENDIX I - PHOTOS OF TEST SETUP




Power frequency magnetic field immunity



TEST REPORT

10. APPENDIX II – PHOTOS OF EUT

Front view

Front view

TEST REPORT

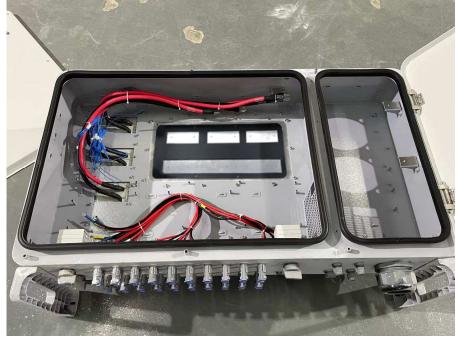
Side view

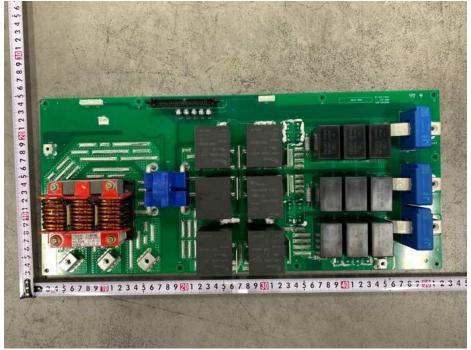
Connection view (for 9 strings)

Connection view (for 10 strings)

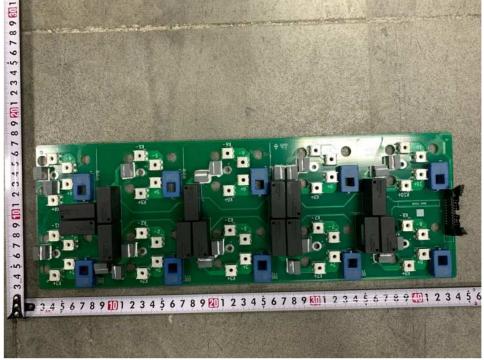
Connection view (for 12 strings)

TEST REPORT

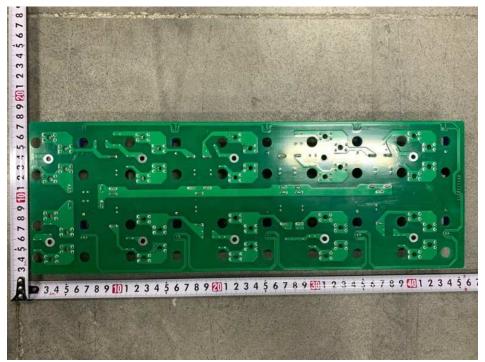

Internal view


Internal view

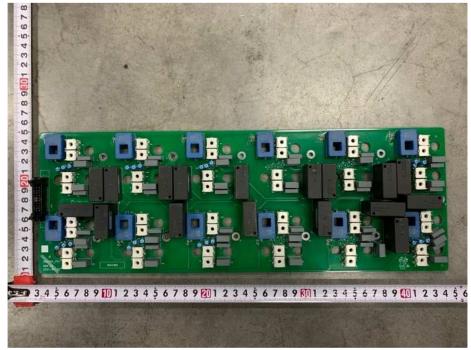
TEST REPORT



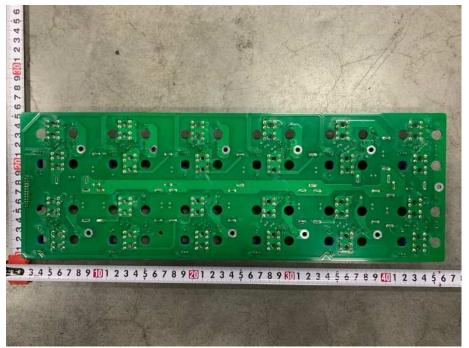
Internal view



AC Sampling board view

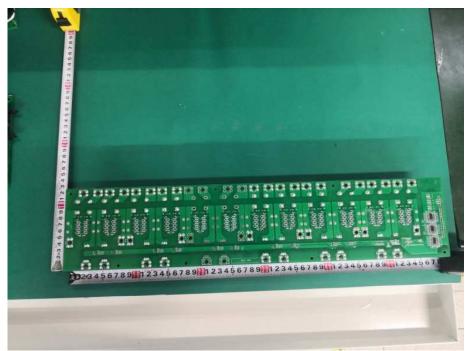


PV input board view (Components side, for 9 and 10 strings)



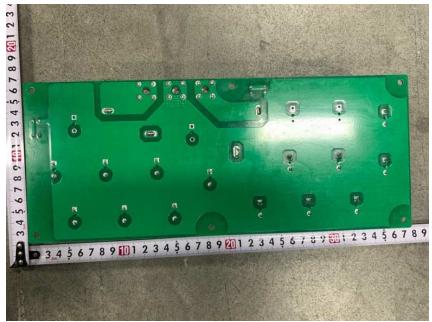
PV input board view view (Soldered side, for 9 and 10 strings)

PV input board view (Components side, for 12 strings)

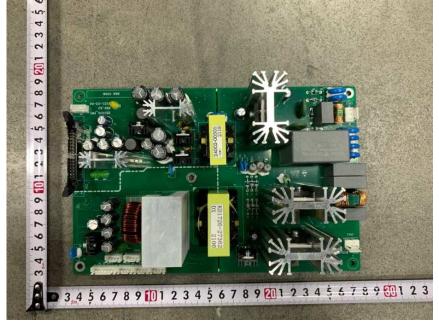

PV input board view (Soldered side, for 12 strings)

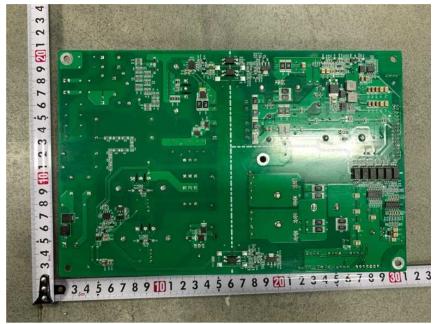
TEST REPORT

DC EMI board view(Components side)



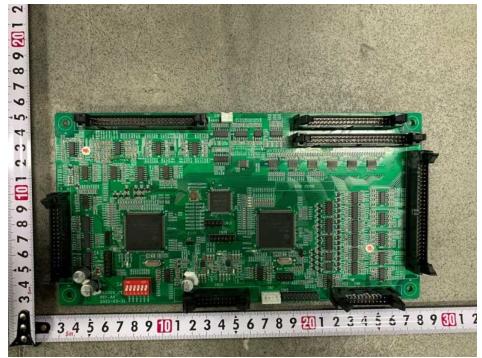
DC EMI board view(Soldered side)


Capacitor board(Components side)

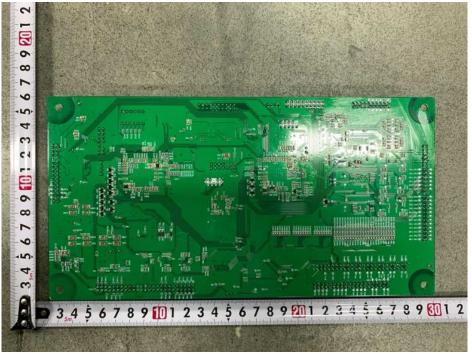

Capacitor board(Soldered side)

TEST REPORT

Total Quality. Assured.

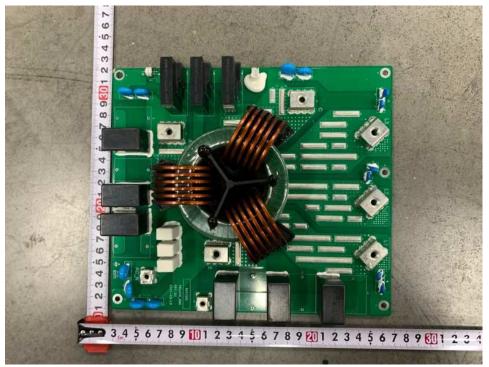


Power board view (Components side)



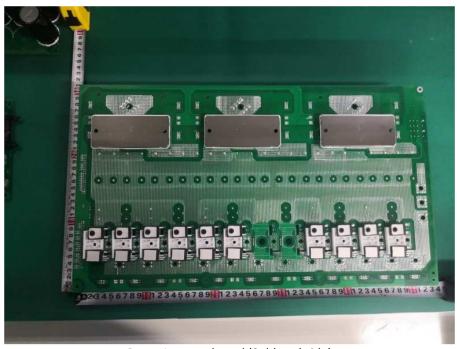
Power board view (Soldered side)

Control board view (Components side)


Control board view (Reverse)

TEST REPORT

ARM board view


AC EMI board view

TEST REPORT

Boost-Inverter board (Components side)

Boost-Inverter board (Soldered side)

#